一个对象在可以被使用之前必须被正确地初始化,实例化,对象是如何创建,由什么组成,又是放在JVM的哪个地方,以及如何使用对象。

创建对象的方式

  1. 使用new关键字创建,这是最常见的一种方式,可以调用任意的构造函数来创建
    1
    Person p = new Person();
  2. 使用Class类的newInstance方法,只能调用空参构造器
    1
    2
    3
    //获取类对象
    Class aClass = Class.forName("priv.starfish.Person");
    Person p1 = (Person) aClass.newInstance();
  3. ConstructornewInstance(xxx),对构造器没有要求
    1
    2
    3
    4
    Class aClass = Class.forName("priv.starfish.Person");
    //获取构造器
    Constructor constructor = aClass.getConstructor();
    Person p2 = (Person) constructor.newInstance();
  4. 使用clone方法,深拷贝,需要实现Cloneable接口并实现clone(),不调用构造器
  5. 反序列化,通过序列化和反序列化技术,从文件或者网络中获取二进制流,JVM会创建一个独立对象
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    //准备一个文件用于存储该对象的信息
    File f = new File("person.obj");
    FileOutputStream fos = new FileOutputStream(f);
    ObjectOutputStream oos = new ObjectOutputStream(fos);
    //序列化对象,写入到磁盘中
    oos.writeObject(p);
    //反序列化
    FileInputStream fis = new FileInputStream(f);
    ObjectInputStream ois = new ObjectInputStream(fis);
    //反序列化对象
    Person p4 = (Person) ois.readObject();
  6. 使用Unsafe类创建对象,通过反射获取Unsafe对象,然后调用本地方法allocateInstance创建对象
    1
    Object event = unsafe.allocateInstance(Test.class);

创建对象的步骤

  1. new指令
    对象的创建需要使用new指令,当遇到new的时候首先去检查这个指令的参数是否能在 Metaspace 的常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过(即判断类元信息是否存在)。如果没有,那么须在双亲委派模式下,先执行相应的类加载过程。

  2. 分配内存
    接下来虚拟机将为新生代对象分配内存。对象所需的内存的大小在类加载完成后便可完全确定。如果实例成员变量是引用变量,仅分配引用变量空间即可,即 4 个字节大小。分配方式有“指针碰撞(Bump the Pointer)”和“空闲列表(Free List)”两种方式,具体由所采用的垃圾收集器是否带有压缩整理功能决定。

堆内存是线程公用的,所有分配内存的时候要考虑并发问题,JVM提供了两种方式,一种对分配内存的动作做同步处理,另一种方式是预先在堆上分配一小块,线程私有的,在其中分配。这种方案叫做**TLAB(Thread Local Allocation Buffer)**,只作用在新生代,Jdk1.8默认开启-XX:+UseTLAB
3. 初始化
内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),这一步操作保证了对象的实例字段在 Java 代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。
4. 对象的初始设置
接下来虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的GC分代年龄等信息。这些信息存放在对象的对象头(Object Header)之中。根据虚拟机当前的运行状态的不同,如对否启用偏向锁等,对象头会有不同的设置方式。
5. <init>方法初始化
在上面的工作都完成了之后,从虚拟机的角度看,一个新的对象已经产生了,但是从 Java 程序的角度看,对象创建才刚刚开始,<init>方法还没有执行,所有的字段都还为零。初始化成员变量,执行实例化代码块,调用类的构造方法,并把堆内对象的地址赋值给引用变量。

对象的内存布局

对象在内存中存储的布局可以分为 3 块区域:对象头(Header)、实例数据(Instance Data)、对其填充(Padding)。

对象头

对象头包含两部分内容:

  • 存储对象自身的运行数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等。
  • 对象的另一部分类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例(并不是所有的虚拟机实现都必须在对象数据上保留类型指针,也就是说,查找对象的元数据信息并不一定要经过对象本身)。

实例数据

实例数据部分是对象真正存储的有效信息,也是在程序代码中定义的各种类型的字段内容,无论从父类继承下来的,还是在子类中定义的,都需要记录起来。这部分的存储顺序会受虚拟机默认的分配策略参数和字段在 Java 源码中定义的顺序影响(相同宽度的字段总是被分配到一起)。

规则:

  • 相同宽度的字段总是被分配在一起
  • 父类中定义的变量会出现在子类之前
  • 如果 CompactFields 参数为 true(默认true),子类的窄变量可能插入到父类变量的空隙

对齐填充

对齐填充部分并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。由于 HotSpot VM 的自动内存管理系统要求对象的起始地址必须是 8 字节的整数倍,也就是说,对象的大小必须是 8 字节的整数倍。而对象头部分正好是 8 字节的倍数(1倍或者2倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。

对象如何访问

  • 句柄访问
    Java堆中会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据和类型数据各自的具体地址信息。使用句柄方式最大的好处就是reference中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要被修改。

  • 直接指针
    Java堆对象的布局就必须考虑如何放置访问类型数据的相关信息,reference中直接存储的就是对象地址。使用直接指针方式最大的好处就是速度更快,他节省了一次指针定位的时间开销。

参考文档

https://zhuanlan.zhihu.com/p/44948944

http://www.starfish.ink/java/JVM/Java-Object.html